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ABSTRACT

Tor is a tool for Internet privacy with millions of daily users. The

Tor system benefits in many ways from information gathered about

the operation of its network. Measurements guide operators in

diagnosing problems, direct the efforts of developers, educate users

about the level of privacy they obtain, and inform policymakers

about Tor’s impact. However, data collection and reporting can

degrade user privacy, contradicting Tor’s goals. Existing approaches

to measuring Tor have limited capabilities and security weaknesses.

We present Stormy, a general-purpose, privacy-preserving mea-

surement system that overcomes these limitations. Stormy uses

secure multiparty computation (MPC) to compute any function of

the observations made by Tor relays, while keeping those observa-

tions secret. Stormy makes use of existing efficient MPC protocols

that are secure in the malicious model, and in addition it includes

a novel input-sharing protocol that is secure, efficient, and fault

tolerant. The protocol is non-interactive, which is consistent with

how relays currently submit measurements, and it allows the relays

to go offline after input submission, even while ensuring that an

honest relay will not have its input excluded or modified. The input-

sharing protocol is compatible with MPC protocols computing on

authenticated values and may be of independent interest.

We show how Stormy can be deployed in two realistic models:

(1) run primarily by a small set of dedicated authorities, or (2) run

decentralized across the relays in the Tor network. Stormy scales

efficiently to Tor’s thousands of relays, tolerates network churn,

and provides security depending only on either Tor’s existing trust

assumption that at least one authority is honest (in the first model)

or the existing assumption that a large fraction of relay bandwidth

is honest (in the second model).

We demonstrate how to use the system to compute two broadly-

applicable statistics: the median of relay inputs and the cardinality

of set-union across relays. We implement Stormy and experimen-

tally evaluate system performance. When Stormy is run among

authorities we can perform 151 median computations or 533 set-

union cardinalities over 7,000 relay inputs in a single day. When

run among the relays themselves, Stormy can perform 36 median
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computations or 134 set union cardinalities per day. Thus, both

deployments enable non-trivial analytics to be securely computed

in the Tor network.
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1 INTRODUCTION

The Tor network [26] is perhaps the most popular tool for private

and open communication on the Internet. As of 2018-03-31, Tor has

an estimated two million daily users from around the world, and

its almost 7,000 relays forward over 100 Gbps of traffic [5]. Tor also

protects the privacy and integrity of over 60,000 onion services,

which benefit from Tor’s anonymity, end-to-end encryption, and

secure name lookup. Statistics such as these provide some insight

into how Tor is being used and how well it is performing, which

guides software developers in improving Tor, informs policymakers

about Tor’s social impact, and helps users understand who else is

using Tor and thus what kind of anonymity it provides. However,

gathering such statistics conflicts to some extent with Tor’s goal of

providing privacy to its users. As a result, Tor collects relatively little

data about itself, and it protects what it does collect by aggregating

it and limiting its accuracy. This decision has left Tor unable to

quickly determine when it is under attack [13, 44], how its traffic is

being blocked or degraded [50, 69], and for what purposes Tor is

being used [8, 12, 42, 54].

Several recent tools have been developed to allow Tor to gather

network statistics while maintaining individual user privacy [30,

31, 42, 56]. These tools apply secure aggregation and differential

privacy to produce statistics in a privacy-preserving way. The func-

tionality of these tools is limited, however, which makes them un-

suitable for many useful classes of measurements, such as statistics

robust to outliers and non-linear data-sketching techniques.

The technical report for this work containing all appendices and proofs is available online.
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We present a system that provides fully-general distributed mea-

surement and monitoring on Tor by making use of secure multi-

party computation (MPC). This system provides Tor with tools to

intentionally choose the level of network transparency that is most

consistent with its goal of providing online privacy and freedom.

To make sure that our system is compatible with Tor, we aim to

rely only on security assumptions that are inherent in the secure

use of Tor. Specifically, we consider two different deployment mod-

els each relying on a different, standard trust assumption in the

Tor network. The first deployment model we consider, the Author-

ity Model, considers running the MPC protocol among a small

number of dedicated authorities. In this model, we only assume

that at least one of the authorities is honest, a standard assump-

tion for directory authorities in Tor. This model allows us to show

the performance that can be achieved under a strong, but stan-

dard trust assumption for Tor. The second deployment model, the

Relay Model, looks to relax this trust assumption to the minimal

requirement that a reasonable fraction (e.g., 75%) of Tor’s total band-

width capacity is controlled by honest relays. In this deployment

model we execute our MPC protocols directly over nearly 7,000

relays while aiming to maximize the throughput of the MPC.

This second deployment model required the development of new

MPC protocols, specialized to large numbers of parties, and rely-

ing on an honest fraction of bandwidth, as opposed to the usual

assumption of an honest number of parties. While the field of MPC

has seen tremendous progress in the last decade, this work marks

the first attempt to tackle the practical challenges that arise in a

secure computation involving thousands of parties. While there is

a long line of work studying how to handle larger computations

from a theoretical perspective [20, 25, 35, 36, 63, 72], mainly relying

on various committee-election procedures, this work does not con-

sider several realistic concerns about node churn, bandwidth, and

memory that we address in our work. Moreover, the largest MPC

experiment performed to date [68] involves 128 parties. However,

the Tor network at the end of March 2018 consisted of almost 7,000

relays, and that number continues to grow.

One major practical challenge we address is the uneven distri-

bution of bandwidth. When dealing with 7,000 independent par-

ties in a globally-distributed system, inevitably, not all parties will

have equal resources. To deal with this issue, we show a simple

way to elect committees of parties that ensures low communi-

cation cost while also guaranteeing high bandwidth utilization,

even when participants have highly varying bandwidth allocations

(Section 4.1). Specifically, we rely on a fairly simple observation.

Many MPC protocols can be divided into offline and online phases

[10, 15, 22, 23, 49, 68]. The offline phase requires quadratic com-

munication, but it is data independent, and can be performed in

parallel. So, instead of using a single committee, as done by prior

work, we assign each party to multiple committees proportional

to the amount of bandwidth that they have, ensuring that parties

with higher bandwidth are not limited by the reduced bandwidth

of smaller parties.

While the above techniques should find application in other

large-scale MPC implementations, assigning parties to multiple

committees also provides an important security benefit in the con-

text of Tor. Tor’s trust assumptions are different than those typically

made for MPC protocols: its security fundamentally requires that

a large fraction of bandwidth is controlled by honest parties. Our

committee-election procedure provides security given only this

trust assumption, and in particular does not require that a majority

of relays are honest. Electing committee members with probability

proportional to their bandwidth serves the dual purpose of allowing

us to reason that even small committees must contain an honest

party, despite the fact that a majority of relays may be malicious.

In addition, to make our protocols better suited to deployment in

the Tor network, we develop new techniques for offline preprocess-

ing and input sharing to make our protocols more resilient against

party churn and malicious behavior. In particular, we allow some

committees to fail during the preprocessing without interrupting

the overall protocol execution. This is not necessary in prior work

when only a single committee is elected, but becomes a requirement

as we aim to better utilize bandwidth. Additionally, we achieve the

following, seemingly contradictory properties for input providers

using an accountable input protocol: (1) a malicious member of

the committee receiving the inputs cannot exclude the input of

an honest party, and (2) a malicious input party that is not on the

committee cannot cause the secure computation to abort. These

properties together allow statistics to be computed despite missing

or malformed inputs without allowing the adversary to degrade

privacy by selectively excluding all but a subset of targeted inputs.

We have implemented our protocol and experimentally demon-

strate capabilities that exceed the limitations of existing proposals

and Tor’s current measurement methods. First, we show an exam-

ple of using robust statistics by computing the median of the relays’

inputs. This statistic tolerates outliers and thus prevents malicious

Tor relays from manipulating measurement outcomes through spu-

rious inputs. It also doesn’t require us to know in advance what

input values are reasonable, as in prior work using input valida-

tion [21]. Such robust aggregate statistics provide privacy while

also providing outputs that can be relied on for network-critical

operation, such as measuring bandwidth capacity [45].

We also demonstrate that Stormy can be used to compute ef-

ficient statistics based on sketches. These computations are not

necessarily robust, but their space efficiency enables the collection

of a variety of useful network statistics. We consider the count dis-

tinct computation and show how to count unique items across the

entire network with exponentially less communication and com-

putation than is typically required by protocols for private set

intersection or union [31, 51, 61]. This design supports accurately

counting distinct items up to the billions, allowing Tor to detect

how many unique users it has, how many distinct Web domains

its users visit, and how many of its onion services are visited at

least once. An analysis of our design shows that both the median

and count-distinct computations can be performed from dozens to

hundreds of times per day, enabling Tor to collect and report these

new statistics quickly and with regularity.

To summarize our contributions: (1) we describe two deployment

models to incorporate MPC into the Tor network based only on

standard Tor assumptions; (2) we develop techniques for provid-

ing input and offline processing that are resilient to party failures

and prevent omission of inputs; (3) we adapt MPC protocols for

non-uniform trust and bandwidth; (4) we describe how to securely

compute a median and sketch-based unique count, which is not

possible with current Tor-measurement systems; and (5) we provide
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experimental results showing practical MPC performance when

run over both a small set of authorities and the entire Tor network.

2 TOR BACKGROUND

Tor [26] anonymizes Internet traffic by sending it through its net-

work of relays. The relays are run by independent volunteers who

donate the computational and network resources [5]. A Tor user

creates an anonymized TCP connection through Tor by sending a

connection request to a locally-run Tor client. The client builds a

circuit through a sequence of relays, and the desired connection can

be placed onto that circuit. Tor circuits generally consist of three

relays: a guard,middle, and exit. Relays are flagged for suitability as

guards or exits based on their resources and willingness to connect

outside the network, and then, for each position in a circuit, a relay

is chosen from among those suitable with probability proportional

to a network-determined weight [6]. That weight is intended to

be proportional to the relay’s bandwidth, largely to balance the

traffic load and improve network performance. However, doing so

also provides security: it requires an adversary to provide costly

bandwidth to the network in order for its relays to achieve positions

in which they can attack clients.

Tor users are vulnerable to an adversary that controls a signifi-

cant fraction of the Tor network. For such an adversary, there is a

non-trivial chance that a client’s circuit is composed entirely of ma-

licious relays, in which case the adversary can easily deanonymize

the connection. In practice, however, the adversary need only con-

trol a circuit’s first and last hop (i.e. the guard and exit) because he

can identify that both are part of the same circuit by correlating

traffic patterns [9, 17]. Controlling any one position harms client

security as well, as a malicious guard can, for example, perform

website fingerprinting [67] and selective denial-of-service [13], a

malicious middle can performwebsite fingerprinting [43] and guard

discovery [39], and a malicious exit can perform man-in-the-middle

attacks [69]. Thus, for Tor to be secure it must be that no adversary

controls a large fraction of the relay weight in any position. While

no sharp threshold for security exists, an adversary that controlled,

say, 25% of Tor’s bandwidth, would effectively have compromised

the network, as under current rates of churn, a quarter of clients

could expect to choose a compromised guard immediately, and the

rest within a fewmonths; given a compromised guard, the client can

expect to choose a compromised exit (and thus be deanonymized via

a correlation attack) within hours [29, 47]. Tor’s threat model is thus

limited to an adversary controlling a small fraction of bandwidth

(we will assume < 25%).

The state of the Tor network is maintained by the Directory

Authorities (DirAuths) [4]. There are currently nine DirAuths that

vote to determine a network consensus. A consensus is produced

every hour and contains, among other things, a list of the relays

with their bandwidths and position flags. DirAuths also store relay

descriptors that contain other data needed by clients, such as the

exits’ connection policies. Every client downloads a copy of the

consensus every hour and downloads sufficiently-recent descriptors

(currently within 18 hours), which it uses to choose relays when

constructing circuits. Most entries in the consensus, including the

relays and their properties, must be voted for by a majority of the

DirAuths, and so Tor relies to a great extent on a trust assumption

that a majority of DirAuths are honest. The DirAuths also generate

a random value to put into the consensus using a commit-reveal

protocol [7]. This value is currently only used to affect how Tor’s

internal name-resolution operates.

To be listed in the Tor consensus, a relay must directly com-

municate with the nine DirAuths and an additional set of Band-

width Authorities who determine the relay’s bandwidth and con-

sensus weight. Authorities are geographically distributed around

the world in many different networks; consequently, relays must be

well-connected in the Internet in order to communicate with each

authority. Moreover, the Tor protocol assumes that each relay can

communicate with all other relays in a fully-connected network.

The Tor network consensus from 2018-10-01 includes 6,331 re-

lays. On that day, Tor relays sent on average about 125 Gbps of

traffic in aggregate on behalf of an estimated 2 million users. We

observe that the distribution of Tor relay weight is skewed towards

high-bandwidth nodes. The largest 25% of relays by weight have

78% of the total weight. The minimum non-zero advertised band-

width is 0.02 Mbps, the median is 12.44 Mbps, and the maximum is

1,397 Mbps. The total advertised bandwidth is 275 Gbps. Much of

Tor’s bandwidth goes unused: the relays’ bandwidth histories show

that they actually relayed only 125.0 Gbps of traffic on average, and

so only 45.5% of the advertised bandwidth is used. Moreover, we

observe that 95% of Tor relays (by bandwidth) have at least 25%

spare capacity (see the technical report [65] for more detail). This

behavior is consistent over time, as we observe that for every day

in 2018-10 at most 48.3% of Tor’s advertised bandwidth is used.

3 SYSTEM MODELS

3.1 Deployment Models

Stormy, our system enabling Tor to securely measure and monitor

itself, can be deployed in two models: (1) the Authority Model

(AuthMode) in which a small set of authorities (e.g. the Direc-

tory Authorities) is dedicated to receiving inputs and performing

the secure computation, and (2) the Relay Model (RelMode) in

which Tor relays themselves are used to perform the secure com-

putation. The advantage of the Authority Model is efficiency. The

Relay Model has the advantage of not requiring bandwidth beyond

that provided already by Tor. Additionally, the Relay Model will

only use Tor’s existing trust assumption that a large fraction of

relays by weight is honest. In contrast, while the Directory Au-

thorities are already entrusted with significant power, using them

as computation parties would give them a new ability to covertly

learn private information about the past. The Relay Model is also

more consistent with designs that decentralize the functions of

the DirAuths [55, 58, 59]. These reasons may justify using the Re-

lay Model of Stormy despite its relative inefficiency.

3.2 Network and Adversary Model

We model the communication network and its hosts based on Tor

as it currently exists. We assume the hosts participating in the

protocols, the hosts’ public keys, and the hosts’ relay weights are

publicly known and agreed upon (all this information is in the Tor

consensus). We further assume that hosts communicate directly

over confidential and authenticated channels, and that maximum

delays between hosts on these channels are known.

The adversary we consider is malicious (i.e. active) and in control

of some Tor hosts. In the Authority Model, we assume at least one
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of the authorities is honest. This is similar to (and weaker than)

the existing assumption of an honest majority of DirAuths. In the

Relay Model, we instead assume that the adversary controls relays

with at most 25% of total relay weight. As discussed in Section 2,

this is a commonly-used limit on a reasonable Tor adversary, as

it represents a basic security assumption in Tor. Also, without

it, many of the inputs to Stormy would be observed before any

secure computation even began. Note that we do not assume that

a majority of relays (by number) is honest because this is neither

necessary nor sufficient for the security of Tor itself. We allow the

adversary to passively observe all of the communication channels

between hosts (a threat that Tor itself is actually not secure against).

4 SECURE COMPUTATION PROTOCOLS

Our computation consists of several stages divided between offline

and online phases. The offline phase includes those stages that can

be completed before the inputs are known. Once the inputs are

available, the online phase can begin. We describe the stages in the

Relay Model, as the Authority Modelis a special case in which a

single committee consisting of the authorities runs all components.

First, committees are elected to run different components of

the system (Section 4.1). We sample large enough committees to

ensure (with all but negligible probability) that each committee

has at least one honest participant. Next, a designated committee

generates secret-shared, authenticated, random bits, while the rest

of the committees each run a protocol to generate secret-shared,

authenticated, AND triples. These bits and triples will be used dur-

ing the online phase (Section 4.2). An important feature of this

process is that a triple-generating committee can abort (e.g., due

to host failure) without requiring the other committees to abort.

After enough bits and triples have been generated, the online phase

begins when the relays’ inputs are available. To start it, a desig-

nated committee executes the input-sharing protocol with each

relay, receiving encoded inputs (Section 4.3). An important and

novel feature of this protocol is that it does not allow a malicious

input party to cause the overall computation to fail, while also

preventing malicious committee members from excluding honest

inputs. Finally, the same committee runs the computation protocol

to evaluate a Boolean circuit on the supplied inputs (Section 4.4).

We will show that each protocol run by a committee is secure

against a malicious adversary as long as at least one committee

member is honest. Moreover, we prove in the Relay Model that

the composed system is secure against an adversary that controls

a fraction f < 1 of the total bandwidth. Composed security in the

Authority Model holds following similar arguments assuming at

least one authority is honest.

Our protocols follow the paradigm for secure computation of

computing on authenticated shares. In the following protocol de-

scriptions, we denote the global MAC key by ∆. We denote a value

v that is additively secret-shared among a set of parties C as [v]C ;
v(i) denotes Pi ’s share of [v]C for Pi ∈ C . We indicate a valuev and

its MAC µ = ∆v that have been secret-shared among C as [[v]]C
(i.e. [[v]]C = ([v]C , [µ]C )). We often omit the subscript when the

set C is clear from context. We denote by [[x]](i) the shares party
Pi has of x and its MAC µ, that is, [[x]](i) =

(

x (i), µ(i)
)

. We use H to

denote a cryptographic hash function. We use x ← S to indicate

that x is chosen uniformly at random from S . Finally, we let λ de-

note a statistical security parameter and κ denote a computational

security parameter. These are set to 40 and 256 respectively in our

experiments.

4.1 Committee Election

We describe how committees are elected in the Relay Model.

4.1.1 Generating Randomness. All parties begin by agreeing on a

random string, which they will use to locally run the committee-

assignment algorithm described below. To securely obtain unbiased

random bits for committee election, we use the randomness already

generated by the Directory Authorities and included in the consen-

suses [7]. The security of this randomness relies on the assumption

that a majority of the DirAuths are honest. Using this assumption

for secure computation on network data does increase the conse-

quences of violating it, including in particular a new power to reveal

information about the activity in the network from before the point

of compromise. To avoid relying on the randomness generated

by the Directory Authorities, the relays themselves may perform

commit-reveal randomness generation using a consensus protocol

suitable for large distributed systems (i.e. with low-communication

complexity and responsiveness to latency [57, 71]).

4.1.2 Committee Assignments. Weuse the securely-generated shared

randomness to elect a set of committees to perform the secure com-

putation. Two types of committees are used: (1) Triple Committees

(TCs) that generate AND triples during the offline phase, and (2)

Computation Committees (CCs) that generate authenticated ran-

dom bits offline and perform the online computation. All relays

know the committees because they are generated locally from the

shared randomness and using the same consensus document (see

Section 5 for further discussion). The committees are used for all

computations within a given time period, after which new commit-

tees are selected using fresh shared randomness.

We wish to choose committees such that, with probability at

least 1−2−λ , all of them have at least one honest member. To accom-

plish this, we fix a committee size c and then select each committee

independently by choosing c members at random (with replace-

ment) with probability proportional to their consensus weights.

Since we sample committee members with replacement, parties

may be selected onto multiple committees, and the parties with

more bandwidth will be assigned to more committees. We sample

a large number mTC of Triple Committees, many of which will

be used in parallel to exploit Tor’s available bandwidth. We also

sample a smaller number mCC of Computation Committees, of

which we will only use one at a time, but keep several in reserve to

recover from node failures. For now, we focus on the case where

only one Computation Committee is used; see Section 5 for how

multiple committees are used. Letm = mTC +mCC. Then, using

Tor’s security assumption that the adversary controls at most a

small fraction f of the network bandwidth, we have the following

claim.

Claim 1. If m committees are sampled, and each is of size c =

⌈(λ+ log2(m))/ log2(1/f )⌉, then the probability that some committee

contains c malicious parties is at most 2−λ .

Proof. Since each party is sampled independently, the proba-

bility that a committee of size c is entirely malicious is f c . Using
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Protocol ΠPre

Notation:

• Let CC be the Computation Committee.

• Let TC1, . . . , TCmTC
be the Triple Committees.

Initialize:

1. Generate ∆ and ∆j : Each Pi ∈ CC chooses ∆
(i ) ← F2λ ,

defining global MAC key ∆ =
∑c
i=1 ∆

(i ). Each TCj similarly

generates ∆j ← F2κ .
2. Transfer ∆: Each party Pi ∈ CC does the following:

a. For each TCj and each Pk ∈ TCj , choose ∆(i )(k ) ← F2λ
s.t. for all j ,

∑

Pk ∈TCj ∆
(i )(k )

= ∆
(i ).

b. Send ∆
(i )(k ) to Pk . Let ∆

(k )
=

∑

Pi ∈CC ∆
(i )(k ) be the

share of the MAC key ∆ held by Pk ∈ TCj .
Random(F, b):
1. Generate random bits: If F = F2, each Pi ∈ CC calls

ΠaShare
(

∆
(i ), b

)

and aborts if this call aborts. CC receives

bits ([[r1]] . . . [[rb ]]) as output.
2. Generate random F2λ elements: If F = F2λ , each Pi ∈ CC

calls ΠaShare
(

∆
(i ), bλ

)

and aborts if this call aborts. CC re-

ceives bits ([[r1]] . . . [[rbλ ]]) as output and combines each

consecutive λ bits to produce F2λ elements ([[s1]] . . . [[sb ]]).
Triples(ℓ): (Let TCj be the TC calling the protocol.)

1. Generate triples: Each Pi ∈ TCj runs ΠaAND
(

∆
(i )
j , ℓ

)

, and

then, for each value in the resulting triples, Pi executes

ΠMACSwitch with ∆
(i )
j and ∆

(i ) and produces triple shares
(

[[xk ]](i ), [[yk ]](i ), [[zk ]](i )
)

, 1 ≤ k ≤ ℓ. If the call to ΠaAND

aborts, Pi informs each Pj ∈ CC and aborts.

2. Transfer triples: For each triple component [[w ]](i ) held by a

Pi ∈ TCj :
a. Pi chooses s i

h
← F2κ ,1 ≤ h ≤ c − 1, sends zi =

[[w ]](i )
⊕c−1

h=1 PRG(s ih ) to Qi ∈ CC, and sends each s i
h

to a distinct remaining Pk ∈ CC.
b. Each Pk ∈ CC computes [[w ]](k ) =

zk
⊕

h,k PRG(sh
k
).

3. Check triples: Each Pi ∈ CC calls ΠMACCheck with ∆ and the

set of all triple component shares [[w ]](i ). If the call aborts,
Pi informs each Pk ∈ TCj , causing each Pk ∈ TCj to abort,

and Pi rejects this and future triple transfers from TCj .

Figure 1: Protocols for offline preprocessing.

a union bound over m committees, we require that mf c ≤ 2−λ .
Solving for c yields the claim.

4.2 Offline Preprocessing Protocols

The offline preprocessing protocols provide authenticated secret-

shared random bits and AND triples. A random bit is needed for

each input bit in the circuit, and a triple is needed for each AND gate

in the circuit. Therefore, the preprocessing protocols can provide

sufficient bits and triples for the online computation knowing only

upper bounds on the number of input bits and the number of AND

gates in the circuit.

The preprocessing protocols make use of the ΠaShare and ΠaAND

protocols of Wang et al. (Figures 15 and 18 of [68], respectively).

These protocols produce pairwise authenticated shared bits. We

denote a bit x authenticated and shared in this way as ⟨x⟩C ,∆, where

C is the group holding the shares, and ∆ ∈ F2κ is the MAC key used

for authentication. We omit the C or ∆ subscript when it is clear

from the context. Under the pairwise authentication, the bit value

is shared as [x]C , and, for each Pi , Pj , Pi holds an authentication

tag Mj [x
(i)] ∈ F2κ on its share x (i) under a key Kj [x

(i)] ∈ F2κ
held by Pj . The key is uniformly random (i.e. Kj [x

(i)] ← F2κ ), and
the authentication tag is produced such that Mj [x

(i)] = Kj [x
(i)] +

x (i)∆(j). We denote the share of ⟨x⟩ held by Pi as ⟨x⟩(i), that is,
⟨x⟩(i) =

(

x (i),
{

Mj [x
(i)],Ki [x

(j)]
}

j,i

)

. A pairwise-authenticated

value ⟨x⟩ can easily be turned into a globally-authenticated value

[[x]] under the first λ bits of ∆. To do so, each party Pi sets its global

MAC share µ(i) to the first λ bits of x (i)∆(i) +
∑

j,i

(

Mj [x
(i)] +

Ki [x
(j)]

)

.

The preprocessing protocols are given as subprotocols of the com-

bined preprocessing protocol ΠPre, shown in Figure 1. ΠPre is run

by the Computation Committee (CC) and the Triple Committees

(TC1, . . . , TCmTC ). We will show that ΠPre realizes the functional-

ity FPre (Figure 6 in Appendix A). The ΠPre subprotocols work as

follows:

4.2.1 Initialize. CC initially generates the global MAC key ∆ and

distributes shares of it to each TCi .

4.2.2 Random. This protocol is run by the CC to generate secret-

shared, random, authenticated elements in F2 or F2λ . It uses ΠaShare

to generate random bits. To instead generate an element of F2λ ,

it uses the technique of Keller et al. [49] to combine λ random

bits. The protocol takes as input a field F and the number b of

random field elements to produce. It outputs to CC the secret-

shared authenticated random field elements ([[r1]]CC, . . . , [[rb ]]CC).

4.2.3 Triples. The protocol is run by CC and a TCj . It takes as

input the number ℓ of triples to produce. It outputs to CC ℓ triples

([[x]]CC, [[y]]CC, [[z]]CC), where x,y, z, ∈ F2 and x ∧y = z. TCj runs

the ΠaAND protocol to generate triples. However, our use of that

protocol raises an issue that we must address. Specifically, ΠaAND

allows a selective failure attack wherein A can learn a few bits

of the MAC key ∆. Wang et al. can deal with this by using the

randomness extraction technique of Nielsen et al. [60]. However,

the situation is more challenging for us because we need to allow for

offline committees to abort without halting the overall computation.

If they all use the same global ∆, then each offline committee could

attempt to learn some bits of ∆, and even if some are detected, the

computation would proceed despite a large leakage of ∆ overall.

We make an important addition to ΠaAND to allow a triple com-

mittee to abort without leaking any bits of the global MAC key ∆,

thus allowing the other committees to continue. We achieve this by

first having each TCj generate authenticated triples using its own

MAC key ∆j . Then each committee calls ΠMACSwitch (Figure 2) on

each triple to change the authentication tags to be under the global

∆. This protocol uses the MAC switch technique of Wang et al. [68]

(Step 5, Figure 8 of [68]). Because different keys are used by each

committee, the leakage cannot accumulate across committees, and

so the randomness extraction in ΠaAND prevents leaking any bits

of ∆. If the ΠaAND call aborts, each member of TCj informs each

member of CC, and then TCj aborts.
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Protocol ΠMACSwitch

Notation:

• Let C = {P1, . . . , Pc } be the committee executing the pro-

tocol.

• [∆1]C ∈ F2κ is input as the current MAC key.

• [∆2]C ∈ F2λ is input as the desired MAC key.

• ⟨x ⟩C,∆1 , x ∈ F2, is input as the value on which to perform

the MAC switch.

Protocol:

1. For each Pi , Pj ∈ C , Pi , Pj :

a. Pi computes K
′
i [x (j )] = H

(

Ki [x (j )]
)

and Ui , j =

H
(

Ki [x (j )] ⊕ ∆
(i )
1

)

⊕ K
′
i [x (j )] ⊕ ∆

(i )
2 .

b. Pi sends Ui , j to Pj .

2. Pj computes M
′
i [x (j )] = x (j )Ui , j ⊕ H

(

Mi [x (j )]
)

.

3. The output to Pi ∈ C is ⟨x ⟩(i )
C ,∆2

=

(

x (i ),
{

K
′
i [x (j )],M

′
j [x (i )]

}

j,i

)

.

Figure 2: MAC switching protocol.

After TCj generates the triples, it transfers them to CC to use

during the online computation. Each member Pi ∈ TCj secret-

shares [[w]](i) toCC, wherew is a triple component, using c−1 seeds
to a pseudorandom generator (PRG) to minimize communication.

That is, Pi samples c − 1 PRG seeds, si1, . . . s
i
c−1, and sends each to

a different member of CC\Qi , whereQi ∈ CC is the ith member of

CC. To Qi , Pi sends [[w]](i)
⊕c−1

h=1 PRG(sih ). Having each Pi ∈ TC
send this to a different Qi ∈ CC provides load balancing. After CC

has received the triples from TCj , it must ensure that they are well

formed so that a malicious member of TCj can’t cause the later

online computation to abort. CC executes a batch MAC check on all

triple components using ΠMACCheck (Figure 3). This MAC-checking

procedure is taken from Keller et al. [49]. If the MAC check fails,

CC informs TCj , TCj aborts, and CC rejects the triple batch and

any further batches from TCj .

4.2.4 Security. Theorem 4.1 shows that ΠPre securely realizes FPre
(Figure 6 in Appendix A) as long as there exists at least one honest

member in every committee. The proof appears in the technical

report [65].

Theorem 4.1. ΠPre realizes FPre in the standalone model with

random oracleH against a static, malicious adversary simultaneously

corrupting up to c − 1 members of each of CC, TC1,. . ., and TCmTC .

A consequence of Theorem 4.1 (following from the definition of

FPre) is that ΠPre can be used to obtain random authenticated bits

and triples secret-shared by CC that are unknown to the adversary

and have correct MAC tags under a global key ∆. An additional

corollary is that TCj can only cause its triple generation to be

aborted and cannot interrupt triple generation by other TCs. Fur-

thermore, ΠPre reveals no information about ∆ to the adversary.

4.2.5 Performance. The offline preprocessing protocols are the

most costly components of Stormy. Generating ℓ triples involves

an execution of a correlated oblivious transfer with errors proto-

col (Figure 19 in [48]) with every other committee member. This

protocol extends a small number of łbasež 1-of-2 oblivious trans-

fers [18] (which are the only offline asymmetric-key cryptographic

Protocol ΠMACCheck

Committee C uses shared key [∆] to check the MACs of authen-

ticated secret-shared bits {[[xh ]]}bh=1:
1. C calls ΠPre.Random(F2λ , 1) to obtain authenticated F2λ el-

ement [[f ]].
2. C generates random coefficients:

a. Each Pi chooses si , ri ∈ {0, 1}κ and sends commit-

ment Comi = H (si | |ri ) to each Pj .

b. After all Comj are received, each Pi sends opening

(si | |ri ) to each Pj .

c. After obtaining all opened values, each Pi sets r =
⊕

j r j and generates (д0, д1, . . . , дb ) ← PRGλ (r ),
дh ∈ F2λ for 0 ≤ h ≤ b .

3. Each Pi computes y(i ) = f (i )д0 +
∑b
h=1

x
(i )
h
дh and µ (i ) =

µ
(i )
f
д0 +

∑b
h=1

µ
(i )
xh
дh , where µ

(i )
z denotes Pi ’s share of the

MAC in [[z]].
4. C performs a partial opening:

a. Each Pi sends y
(i ) to a designated party P1.

b. P1 sends y =
∑c
j=1 y

(j ) to each Pi .

5. Each Pi computes ζ (i ) = µ (i ) −y∆(i ), chooses qi ∈ {0, 1}κ ,
and sends commitment Comi = H (qi | |ζ (i )) to each Pj .

6. After all Comj are received, each Pi sends opening
(

qi | |ζ (i )
)

to each Pj .

7. After obtaining all opened values, each Pi sets ζ =
∑c
j=1 ζ

(j )

and aborts if ζ , 0.

Figure 3: MAC checking protocol.

operations) into a large number (ℓ) of oblivious transfers using only

symmetric key operations. However, it has high communication

costs, and with c parties, it requires that each party sends approxi-

mately 3(c−1)(κ+λ)ℓβ bits for ℓ triples, where β ≤ λ /(log2(ℓ))+1.
The Random functionality is also based on OT extension and thus

also requires relatively cheap computation, but its communication

costs for b bits are about 2(c − 1)λb and are thus significantly lower

than triple generation unless b ≫ ℓ.

4.3 Input Sharing Protocol

Another critical part of our protocol is in how inputs are provided to

the Computation Committee, CC. Specifically, our input protocol

must (1) ensure that a malicious committee member cannot modify

or exclude the input of an honest party and (2) prevent a malicious

input party from causing the computation to abort. To reduce the

amount of time input parties must be online, we also want this

protocol to be łnon-interactivež in the sense that there is only

one message sent from an input party to the committee (further

interaction within the committee is allowed).

One of the challenges in achieving these properties simultane-

ously is the need for parties to prove that they did not receive a

message that should have been sent. To support such proofs, we

design the accountable message functionality FAccMsg, described in

Figure 8 (Appendix A). The functionality has send and reveal sub-

routines. The send subroutine delivers a message to the receiving

party while allowing him to prove to the other committee members

if he failed to receive a message. The reveal subroutine simply for-

wards a sent message to all committee members. We describe in the

technical report [65] how to realize FAccMsg using an encryption
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scheme with verifiable decryption (e.g. El Gamal). It requires O(c)
communication, with the sender sending an encrypted message to

every committee member, each of which forwards the ciphertext

to the receiver.1

We use FAccMsg for sending point-to-point messages of both

public values and c-out-of-c additive shares. In the latter case, the

functionality looks a lot like weak verifiable secret sharing (WSS)

[62], which guarantees agreement on an honest dealer’s shared

value, and allows disagreement on whether to abort when the dealer

is malicious.2 However, there are a few important differences. We

require an additive sharing of the input (rather than, say, a Shamir

sharing), and we do not want to involve the dealer after the sending

phase. It is not clear how to achieve these properties using WSS.

Note that, because we use an additive sharing, reconstruction is

always possible, as long as everyone has received some signed

value in the field. Additionally, there are a few relaxations that

we leverage: we allow some honest parties to abort, even when

the dealer is honest (as long as they don’t blame the dealer), and

we allow disagreement on the dealer’s input value if the dealer is

malicious.

We now briefly describe the ΠInput protocol (Figure 4) making

use of FAccMsg. A functionality FInput is given in Figure 7 (Ap-

pendix A) and a proof of security for this protocol is given in the

technical report [65]. Pin sends additive shares of his masked, b-bit

input, and of the b mask values. He cannot authenticate these val-

ues, since he does not know ∆, so he instead computes part of the

MAC check protocol. Specifically, he secret-shares random coef-

ficients (χ1, . . . , χb ), and computes and sends their inner-product

with his mask values.

The committee transfers the MAC values from the pre-processed

random bits to the masked input, and then opens the shared coeffi-

cients in order to complete the MAC check on the masked input.

If the MAC check terminates without error, they know they have

validly authenticated, unmodified input. If an error is detected dur-

ing the MAC check, there are two possibilities: either the input

party sent an inner-product that was inconsistent with his mask

values and his MAC check coefficients, or some committee member

modified some of the values he received. The committee members

use the reveal subroutine of FAccMsg to verify that the masks, the

coefficients, and the inner-product are consistent; crucially, they

can do this without exposing the masked input, and so an honest

Pin is not adversely impacted.

The input protocol has different abort behavior based on which

party is controlled by the adversary. If only Pin is malicious, we

guarantee that all committee members detect this and blame Pin, so

they can exclude his input and continue. If only committee mem-

bers are malicious, some honest parties may not immediately detect

this, but none will blame Pin. We allow the protocol to continue

with a fraction of the honest parties, who will quickly abort anyway,

as at least one of their honest partners will have stopped partic-

ipating. Finally, if both the input party and committee members

1If we are willing to sacrifice the non-interactive property, the sender can send a
message directly to the receiver without accountability, saving on communication. The
receiver may then complain and ask for an execution of the accountable message pro-
tocol only when necessary. If everyone is honest, the protocol remains non-interactive.
2Because we sometimes use this functionality for sending public values, we model it
as having send and reveal subroutines, instead of share and reconstruct, which is used
in VSS and WSS.

are malicious, they can force part of the committee to blame the

input party while others blame the committee (or nobody at all).

Regardless, all committee members will terminate the protocol,

either immediately, or when detecting that others have aborted.

The proof of the next theorem appears in the technical report [65].

Theorem 4.2. ΠInput securely realizes the ideal functionalityFInput
in the standalone model against a static, malicious adversary that

can corrupt Pin and at most c − 1 out of the c parties in CC.

4.4 Online Computation Protocol

The online computation protocol is run by the Computation Com-

mittee, CC, to evaluate a Boolean circuit on inputs provided by the

relays. We use the TinyOT protocol of Burra et al. (Figure 11, [15]).

The online computation protocol ΠOnline uses the subprotocols

ΠAdd, ΠMultiply, and ΠOutput described by Burra et al. It takes as

input the circuit C to be computed and the global MAC key [∆]. Ac-
cess to the offline bits and triples is assumed as well. After running

ΠInput with each input party, CC executes ΠAdd and ΠMultiply for

each of the XOR and AND gates in C, respectively, in topologically-

sorted order. The inputs at each gate are values [[x]]CC and [[y]]CC
either obtained during input sharing or output by a previous gate

evaluation, and the gate’s output is a value [[z]]CC, where z = x ⊕ y
for an XOR gate and z = x ∧ y for an AND gate. ΠOutput takes the

values of the o output gates ([[y1]]CC, . . . , [[yo ]]CC) and either aborts
or outputs (y1, . . . ,yo ) to each member of CC. The functionality

FOnline realized by this protocol is given in Figure 9 (Appendix A),

and the following theorem follows from Burra et al. [15].

Theorem 4.3. ΠOnline securely realizes the ideal functionality

FOnline in the standalone model against a static, malicious adversary

that can corrupt at most c − 1 out of the c parties in CC.

The online computation phase is fast and inexpensive compared

to the offline preprocessing phase. It involves no asymmetric-key

operations. Evaluating XOR gates is localÐno network communica-

tion occurs. Evaluating an AND gate involves sending and receiving

about two bits on average. A major cost is latency due to the round

complexity, which is determined by the circuit’s AND-gate depth.

4.5 Complete protocol

We now describe how these component protocols can be assembled

into a protocol ΠRM−MPC to securely evaluate a Boolean circuit C

in the Relay Model. The protocol in the Authority Model can be

recovered by skipping committee election and executing everything

in the single committee, and security follows in a straightforward

way from prior work. ΠRM−MPC is executed as follows:

(1) All parties run the randomness generation protocol described

in Section 4.1.1 to generate shared randomness r .

(2) Each party locally uses r to electm committees, setting the

first committee as the CC, and the rest as TCs.

(3) The CC runs FPre.Initialize to generate a global MAC key ∆.

(4) The CC runs FPre.Random to generate sufficiently many

random bits and field elements for all inputs in C.

(5) Each TCj runs FPre.Triples to generate AND triples and

outputs them to the CC. If any party in any TCj aborts, no

triples are produced, but the protocol continues.
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Protocol ΠInput

Notation:

• Let C = {P1, . . . , Pc } denote the Computation Committee

holding global MAC key ∆.

• Let Pin denote the input party holding input bits x1, . . . , xb .

Subroutine Adjust([[r ]], [s]) 7→ [[s]]: (r , s ∈ F2 or r , s ∈ F2λ )
1. Let r (i ),m(i )r , and s (i ) denote Pi ’s share of r ,mr (the MAC

on r ) and s , respectively.

2. Each Pi computes d (i ) = s (i ) − r (i ). C opens d .

3. Each Pi setsm
(i )
s =m

(i )
r + d · ∆(i ). C now holds [[s]].

Preprocessing:

1. C calls FPre(random, F2λ , 1) to obtain authenticated, secret-

shared field element [[r0]].
2. C calls FPre(random, F2, b) to obtain authenticated, secret-

shared bits {[[rh ]]}bh=1.
Input Sharing:

1. Pin samples s0 ← F2λ , (s1, . . . , sb ) ← F
b
2 , and

(χ0, . . . , χb ) ← Fb+1
2λ

. Pin computes y =
∑b
h=0
(χh · sh ).

2. Pin forms random sharings {[sh ]}bh=0, {[xh + sh ]}
b
h=1

, and

{[χh ]}bh=0. Pin accountably sends to Pi ∈ C its shares,

and the public value y , using FAccMsg .send. If Pi receives

(abort,C) in any execution of FAccMsg, he aborts and blames

C . Otherwise, if he receives (abort, Pin) in some execution,

he excludes Pin’s input.

3. C calls Adjust([[rh ]], [sh ]) and obtains {[[sh ]]}bh=0.
4. Each Pi ∈ C opens their share of χ

(i )
h

, for h = 0, . . . , b , by

calling FAccMsg .reveal(χ (i )h ).
(Here, and any other time FAccMsg .reveal is called, if a party

receives (abort,C), they abort and blame C .)

5. Each Pi computes χh =
∑c
i=1 χ

(i )
h

, for h = 0, . . . , b , and

m(i ) =
∑b
h=0

(

χh ·m(i )h
)

, where m
(i )
h

denotes Pi ’s MAC

share on sh .

6. C executes a MAC check:

a. Each Pi computes ζ (i ) =m(i ) − y · ∆(i ).
b. C securely opens ζ =

∑c
i=1 ζ

(i ): each Pi sends a com-

mitment Comi = H (ζ (i ) | |ri ) to all Pj ∈ C , and after

receiving all c − 1 commitments, sends the opening

(ζ (i ) | |ri ) to C .

c. If ζ , 0, C must decide to exclude or abort:

i. Each Pi echos his shares of s , {s (i )h }
b
h=0

, by calling

FAccMsg .reveal(s (i )h ).
ii. Each Pi echos y by calling FAccMsg .reveal(y). If C

detects any inconsistency, C excludes Pin’s input.

iii. Each Pi computes sh =

∑c
i=1 s

(i )
h
. If y ,

∑b
h=0
(χh · sh ), C excludes Pin’s input. If not, C

aborts and blames C .

7. Each Pi echos {(x (i )
h

+ s
(i )
h
)}b
h=1

by calling

FAccMsg .reveal((x (i )h + s
(i )
h
)).

8. C locally computes [[sh ]]+ (xh + sh ) = [[xh ]] for 1 ≤ h ≤ b .

Figure 4: Protocol for input sharing.

(6) Each relay runs FInput with the CC to provide its input. If

an input relay is disqualified, his input is dropped but the

protocol continues. If a CC member aborts, the protocol

stops.

(7) The CC runs FOnline to securely evaluate the circuit C. If

any party in the CC aborts, the protocol stops.

To analyze the security of this protocol, we introduce a new

model of security for Relay Model MPC protocols (FRM−MPC)

that we believe captures the requirements for MPC protocols run

between a large number of parties. Specifically, our model builds on

the secure computation with abort and no fairness definition given

by Goldwasser and Lindell (Def. 5, [34]). This is a relaxation of

security with abort in which the adversary is allowed to specify

which honest parties abort and which ones receive output.

In our model we additionally designate a small set of parties (the

CC) such that an adversary A is only allowed to abort the func-

tionality (as described above) if CC ∩A , ∅. This is necessary in a

large-scale deployment where many more parties may participate

in the protocol, but should not be able to interrupt the computation

(either due to churn or malicious failure). Informally, the function-

ality provides security with abort against members of CC and full

security (without allowing abort) against everyone else. A formal

description of FRM−MPC is given in Figure 10 (Appendix A) and a

proof of the following theorem is given in the technical report [65].

Theorem 4.4. If m committees of size c = ⌈(λ + log2(m)) /
log2(1/f )⌉ are sampled, then ΠRM−MPC securely realizes FRM−MPC

in a standalone (FPre, FInput, FOnline)-hybrid model against a static,

malicious adversary corrupting less than an f fraction of the total

available bandwidth.

5 HANDLING PARTY CHURN

A key goal of Stormy is to be resilient to party failures as well

as malicious behavior. We now discuss how we use the protocols

described in Section 4 to achieve this. The discussion in this section

is restricted to the Relay Model.

In Stormy, time is partitioned into a series of epochs (e.g. 24 hour

periods). During an epoch, committees are elected once (when in the

Relay Model), and then many rounds of offline preprocessing and

online computation are run within the epoch. We wish to provide

security over an epoch; that is, we bound the probability that the

adversary succeeds in subverting security in committee election,

offline preprocessing, or online computations to be at most 2−λ

during an epoch. In this section, we describe how Stormy operates

over an epoch.

5.1 Committee Usage

In the Relay Model, two hours before the start of the epoch, Tor’s

DirAuths create an Epoch Document. This document is produced

and distributed using Tor’s existing consensus mechanism (Sec-

tion 2) and is an extension of the existing daily generaton of shared

randomness. Each relay downloads the Epoch Document in addi-

tion to the current consensus, and can be expected to be able to

obtain it in time as relays already must have a consenus within

two hours of the current time. The Epoch Document contains: (1)

the random string currently produced daily by Tor, and (2) a list of

relays and their consensus weights. The Epoch Document provides

a consistent view of the network for a given epoch that each relay

uses to locally determine the Triple Committees and Computation

Committees. An Epoch Document is valid for only its epoch.
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During the committee-election process in the Relay Model, we

selectmTC Triple Committees andmCC Computation Committees

(see Sec. 4.1). However, we do not use all of these simultaneously; we

find subsets with good performance, and hold some committees in

reserve to replace committees that die due to churn. We consider

every committee elected in an epoch to be in one of three states:

active, inactive, and dead. Active committees are actively running a

system protocol. Inactive committees are still responsive and avail-

able for use but have not yet been made active. Dead committees

failed or aborted at some point in the epoch, and they are not used.

All committees begin the epoch as inactive, some initial subset

is made active, and, as active committees die, inactive ones may

become active to replace them.

Amain constraint on the use of TC committees is that we wish to

limit Stormy’s bandwidth consumption to a fraction b of Tor’s total

bandwidth. This reserves Tor’s resources for its primary purpose of

relaying client traffic. We set b = 0.25, leaving room for variation

in Tor’s traffic, as one half of Tor’s bandwidth goes unused and 95%

of relay bandwidth has at least 25% spare capacity.

The other main constraint on TC is the limited memory of the

relays. A single relay may belong to several active TCs and thus

simultaneously run many protocol executions. Each execution uses

a non-trivial amount of memory (e.g. 291 MiB in the setting we will

consider). Therefore, wemust limit the number of active committees

that share a single member.

We initially activate a TC if doing so doesn’t violate these con-

straints, and increases overall bandwidth. That is, we consider the

TCs in order and add them if the total bandwidth used is less than

a b-fraction of Tor’s total bandwidth, if no relay would use too

much memory (we can use a conservative limit of 8 GiB for the

largest 1% of relays and 3 GiB for the rest), and if no member of

the committee has its bandwidth fully allocated to already-active

committees. Then, when a committee dies during the epoch, we

repeat the process with the remaining inactive committees.

We use a different process to activate a CC, because only one

is active at a time. This committee has sole responsibility for bit

generation and online computation, and thus should have high

bandwidth. Therefore, we simply activate the inactive committee

with the highest bandwidth. The same process applies if the active

CC dies during the epoch.

5.2 Protocol Aborts

Unlike the set of stable authorities, temporary relay downtime is

commonplace for benign reasons; for example, a relay operator may

take his relay down to apply software patches, or a hosting center

may lose power. To account for this natural churn, a design goal for

Stormy is that the system should tolerate some failures instead of

completely halting for the epoch when a relay goes offline or causes

an abort. During triple generation, if a TC fails, each member of the

TC notifies each member of the active CC, and the TC is marked

dead. If there exist any inactive TCs, a new TC will be activated.

The CC runs a MAC check on each batch of triples it receives

from a TC to ensure that no errors have been introduced during

transfer; if the MAC check fails, the TC is marked dead, and a new

TC is activated if possible. The only other possible failures occur

during bit generation, input sharing, and online computationÐall

within the activeCC. If the activeCC fails, eachCCmember notifies

each relay in the network, and a new CC is activated if there are

any inactive CCs. Stormy halts in RelMode only when all TCs or

CCs are marked dead. Committees are reelected and protocols are

restarted at the beginning of the next epoch.

5.3 Security Parameters

Among the system components, many of the potential security

failure events occur independently. During committee election,

there is a chance that some committee is composed entirely of

malicious parties. There is a chance that a given triple committee

deviates from the protocol and is not caught. Finally, there is a

chance that the computation committee acts maliciously during bit

generation, input sharing, or online computation and is not caught.

To achieve λ-bit statistical security overall for an epoch, we must

consider the probability that any one of these occurs.

In the Authority Model, setting all statistical security parame-

ters to λ is sufficient regardless of the number of authorities, because

there is no committee election, and all computation halts for the

epoch upon any abort. The same is not true of the Relay Model

Ð mTC TCs and mCC CCs are elected, and the adversary can at-

tempt to cheat in each of them. The chance that a given committee

is entirely malicious is f c , where f denotes the adversary’s frac-

tion of bandwidth, and c denotes the size of each committee. Let

m = mTC +mCC, let λ1 be the statistical security parameter dur-

ing triple generation, and let λ2 be statistical security parameter

during bit generation, input sharing, and online computation. By

applying a union bound, the adversary’s overall success probability

is at mostmf c +mTC2
−λ1 +mCC2

−λ2 . To bound this by 2−λ , we
simplify the security constraint by setting λ1 = λ2 = λ′, which
yields the requirement thatm(f c + 2−λ′) ≤ 2−λ . Withm = 1008,

f = 0.25, and c = 25, setting λ′ = 56 is sufficiently large to provide

overall λ = 40-bit statistical security.

6 TOR COMPUTATIONS

We present two computations that are useful in Tor, median and

set-union cardinality, and we describe how they can be efficiently

computed via MPC. Even just these two functions could be applied

to measure and monitor many types of activity on the Tor network.

Moreover, they demonstrate key techniques, such as sorting and

sketching, needed for other types of computations. We expect that

these methods could be applied to a wide variety of use cases within

Tor, including for denial-of-service detection and mitigation, moni-

toring for protocol anomalies, detecting network errors and failures,

understanding user behavior, tracking performance characteristics,

and detecting blocking of clients and exits.

6.1 Median

The first function we demonstrate is the median of the relay in-

puts. The median is a robust statistic, insensitive to the presence

of outliers. This property is valuable in the context of Tor because

malicious relays can provide arbitrary inputs that might make other

statistics, such as average or maximum, meaningless. For an ex-

ample of how we might use median to to securely determine the

number of circuit failures in a day, each relay can count the num-

ber it observes, then it can infer a global count by dividing by the

fraction of circuits its sees (i.e. its bandwidth fraction), and then the
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Table 1: Median circuit properties with 32-bit inputs.

# Inputs 1,000 3,000 5,000 7,000

# Input Bits 32,000 96,000 160,000 224,000

# Gates (×106) 6.70 2.76 54.0 78.4

# AND Gates (×106) 1.51 6.19 12.1 17.6

Depth 7,031 9,973 11,636 11,636

AND Depth 1,815 2,574 3,003 3,003

median of these values provides a robust estimate of the true total

count. This method can be used for any measurement for which

a relay can use its local measurements to make an inference of

the global statistic, such as counting the number of circuits, bytes,

clients, etc.

To securely compute the median, we use a circuit that sorts the

input values and then outputs the middle one. We use a Batcher odd-

even mergesort, which is a practical sorting network for realistic

numbers of inputs [66]. For each compare-and-swap operation

in the network, we use a comparison circuit with low AND-gate

complexity [52]. The total number of AND gates in the resulting

circuit on n inputs of b bits each is at most bn⌈log22(n)⌉/2, and
its AND depth is (b + 1)(⌈log2(n) + 1⌉ ⌈log2(n)⌉/2). Table 1 shows
the size and depth of the median circuit for different numbers of

32-bit inputs. Using 32-bit inputs enables integer input values up

to 4 billion, which is sufficient for most measurements of the Tor

network that relays might make.

6.2 Set-Union Cardinality

The second function we demonstrate is the cardinality of the union

of sets observed at the relays. That is, this function counts the num-

ber of distinct items among all items seen by relays. This computa-

tion is not robust, but could still provide much useful information

about the Tor network, such as how many unique users it has,

how that population changes over time, and how many different

domains are visited.

Computing set-union cardinality is straightforward if the do-

main is smallÐeach relay maintains its set as a bit vector, each

observed item is hashed to an entry, and its value set to 1. The

relays use the vectors as input to a secure computation of the OR

of each entry, receiving as output the total number of entries with

value 1. However, this approach doesn’t scale well with the domain.

Tor has estimated as many as 4 million different users in a day.

Taking the union (i.e. the OR) of million-bit inputs from thousands

of relays would require billions of expensive triples to be gener-

ated offline. Similarly, counting billions of distinct items (e.g. URLs

visited) would require billions of additions and thus triples.

Therefore, we instead use a representation of set cardinalities

that is much smaller and enables cheaper MPC through the use of

free-XOR. Each relay stores a LogLog sketch [27], which provides

space-efficient counting of distinct items given a fixed relative error.

We choose LogLog over more-recent improvements [37] because

the circuit computing the count of a LogLog sketch is simpler.

Each LogLog sketch consists of k counters of bit-width w . We

modify the standard sketch by (1) storing each counter in a unary

representation (making the maximum stored value 2w instead of

22
w
), and (2) representing the 0 or 1 value at each counter entry

with a bitstring of length s , where 0s represents 0 and any non-

zero string represents 1. These changes will reduce the number of

expensive AND gates needed during the MPC computation.

A relay locally updates its LogLog sketch when it observes an

item x . The relay hashes x to H (x) and uses the first log2(k) bits
of H (x) to determine which counter, Ci , to update. Examining the

remaining bits of H (x), the relay determines the largest number j

of consecutive ones at the beginning of that bitstring. The relay

then sets the first j entries of the chosen counter Ci to 1. The s-bit

representation of each of those entries is set to 1 by choosing each

of its s bits uniformly at random. We set s ≥ ⌈λ + log2(kw)⌉ so that,
over all counter entries, a random value results in a non-zero value

with probability at least 1 − 2−λ .
Using this input representation significantly improves the effi-

ciency of the computation. It reduces the OR of the counter bits

to XOR operations, which are free. This opens an attack in which

a malicious Computation Committee member sets a counter to 0,

but doing so requires guessing an unknown random s-bit value,

and s is chosen so that this occurs with probability at most 2−λ .
(Note that a CC member can easily change a 0 value to a 1, but

this is allowed, since it can provide a logical 1 in its own input

for any counter entry, which remains 1 after taking the union.)

Therefore, we do not need to protect against errors until after in-

put sharing and union are computed through bitwise XORÐinput

parties simply secret-share their inputs to the CC using FAccMsg,

and committee members then just XOR the inputs. Only afterwards

do they use the preprocessed random bits to add MAC tags to the

resulting secret-shared values. The unique count is then computed

from those aggregated counters.

To obtain this cardinality, the secure computation determines

the last index zi of a 1 entry in each counter Ci (0 if none) and

returns the sum z =
∑

i zi of these indices. Durand and Flajolet [27]

show that αk2z/k is an unbiased estimator of the true distinct count,

where α is a constant that adjusts for bias. They also show that

it has a standard error of approximately 1.3/
√
k . Thus the value

produced by the secure computation can be transformed into a

cardinality estimate using public information.

The total number of AND gates in this LogLog circuit is at

most k(w(s + 1) + ⌈log2(w)⌉ + ⌈log2(k)⌉). Its AND depth is at most

⌈log2(s)⌉ +w + ⌈log2(k)⌉(⌈log2(w)⌉ + ⌈log2(k)⌉). Table 2 shows the
size and accuracy of the LogLog circuit with counters of width

w = 32 and counter entries of size s = 55 bits. With 32 entries

per counter, cardinalities above 4 billion can be measured. For

k = 1, 024, setting the bits per entry at s = 55 yields the desired

failure probability of at most 2−40. Note the circuit size doesn’t

vary with the number of inputs, which means that the amount of

MPC communication after input sharing would not be affected by

growth in the Tor network.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Stormy. We have

implemented all of the protocols in roughly 10k lines of C/C++. 3

We use cryptographic primitives provided by the OpenSSL, Sodium,

SimpleOT, and MIRACL libraries [1ś3, 18]. SIMD CPU instructions

are used in critical regions of code to improve performance. Our

3The code is available online at <https://github.com/rwails/stormy>.
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Table 2: LogLog circuit properties after XORed relay inputs.

# Counters 128 512 1,024 4,096 8,192

# Input Bits (×106) 0.23 0.90 1.80 7.21 14.4

# Gates (×106) 0.47 1.89 3.78 15.1 30.2

# AND Gates (×106) 0.23 0.90 1.81 7.2 14.5

Depth 87 97 102 112 117

AND Depth 49 51 52 54 55

Std. Error 11.5% 5.7% 4.1% 2.0% 1.4%

implementation does omit some low-level details; for example, it

does not recover gracefully from host timeouts/disconnects, and it

is not hardened against timing-analysis attacks. We do not expect

these omitted details to significantly affect the performance charac-

teristics of our implementation. We measure the performance of

each protocol piece in isolation (Sections 7.2ś7.3) and also provide

holistic end-to-end estimates of Stormy’s performance (Section 7.4).

7.1 Methodology

We use the Shadow network simulator [41] to analyze the protocols’

network costs. Shadow is a tool frequently used to simulate the Tor

network and modifications/additions to Tor’s protocols [40, 46, 64].

Using Shadow allows us to run our protocol implementations at

network-scale and on networks with properties that accurately

model the Tor network.We explore ranges of network parameters in

our experiments, e.g., by varying bandwidth, latency, and committee

size. We measure the time required to complete an honest protocol

execution and the number of application-layer bytes transmitted

by each host. Usually in our protocols the hosts send and receive

an equal number of bytes; in cases of asymmetry we present łdata

transmitted (TX)ž as the max of bytes sent and received.

Table 3 shows the default network parameters used across Shadow

experiments. In the Authority Model, a single Computation Com-

mittee with high bandwidth (1 Gbps by default) performs both the

offline preprocessing and the online computation. We use a one-

way latency of 50 ms between the authorities, which corresponds

to the median latency between Tor relays reported in the 2015 mea-

surement study of Cangialosi et al. [16]. In the Relay Model, many

parallel Triple Committees generate and transfer authenticated

triples; the Computation Committee generates authenticated bits,

receives relay inputs, and performs the online computation. For

the default bandwidth allocations of the TC and CC members, we

used the median active-committee bandwidths of 100 simulations

of the committee-election process on a 2018-10-01 Tor consensus

with mTC = 1, 000 sampled TCs, mCC = 8 sampled CCs, and a

committee size of c = 25. We conservatively set the committee

members’ latencies to 250 ms, which corresponds to the highest la-

tency measured between any two Tor relays [16]. In both RelMode

and AuthMode, when running input-sharing experiments, we use

7,000 input parties, which is an upper bound on the number of Tor

relays in 2018-10. All input parties are configured pessimistically

with 20 kbps links, which is the minimum bandwidth advertised by

any relay in the Tor network.

Using Shadow comes with a couple of limitations. First, Shadow

measures only the network performance of the protocols; computa-

tional performance (e.g. CPU usage or memory consumption) is not

captured in the simulations. However, the protocols used in Stormy

Table 3: Default network parameters used in experiments.

BW Latency Parties

RelMode

Triple Committee 6.4 Mbps 250 ms 25

Computation Committee 12 Mbps 250 ms 25

AuthMode (CC) 1 Gbps 50 ms 5

Input Party 20 kbps 250 ms 7,000

are computationally inexpensive. The offline preprocessing consists

primarily of symmetric-key operations, and the online computation

requires almost no cryptographic operations. Communication costs

dominate protocol runtime, and so our Shadow experiments should

closely estimate total protocol runtime. Second, it takes prohibi-

tively long to simulate network-scale operation on long timescales

(e.g. many hours). Therefore, when estimating the end-to-end per-

formance in RelMode, we instead use a custom event simulator that

incorporates results from the Shadow experiments (see Sec. 7.4).

7.2 Offline Preprocessing

7.2.1 Authenticated Triple Generation. Recall from Section 4 that

one secret-shared authenticated AND triple is required for each

AND gate evaluated during the online phase. Triple generation

generally requires the most time and communication of all the

components of Stormy. We evaluate the cost of triple generation by

running experiments in which a single committee generates a batch

of authenticated triples. The TC in RelMode generates batches of

5,112 triples at a time, and the CC in AuthMode generates batches

of 280,000 triples. Smaller batch sizes require less memory, but

reduce the protocol’s efficiency. We choose batch sizes that are

minimal at a given level of efficiency.

In the default configuration, a single TC in RelMode generates

a batch of 5,112 triples in 210 s. 91 MiB of data is sent/received

by each of the relays. The CC in AuthMode generates a batch of

280,000 triples in 9.0 s. 420 MiB of data is sent/received by each

authority.

Figures 5.1ś5.5 present the throughput and costs of generating

triples when produced in various experimental setups. The Auth-

Mode CC produces batches of 280,000 and a RelMode TC produces

batches of 5,112 in all experiments. A single RelMode TC achieves

modest throughputs in the range [2, 43] triples
second for realistic com-

mittee bandwidth capacities; however, since many TCs generate

triples in parallel, RelMode’s network-wide, overall throughput

is much higher (7.4). The single AuthMode CC achieves much

higher throughputs in the range [2.7k, 36k] triples
second because of their

assumed high-bandwidth links. Each triple costs 18 KiB of com-

munication per-party in the 25-member TC. In the 5-member CC,

each triple costs only 1.5 KiB due to the smaller committee size and

lower β-overhead achieved at the larger batch size (see Section 4).

Oblivious-transfer (OT) extensions performed pairwise between

each host constitute the dominant cost of triple generation. We

find that increasing available bandwidth can significantly improve

runtime because the large messages sent during OT extension can

be transmitted more quickly. Because each party performs 6 OT

extensions with every other party, the runtime/transmission-cost

of triple generation scales linearly with the size of the commit-

tee. The offline-phase protocols do not require many rounds of

communication so latency has a minimal effect on runtime.
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Figure 5: Network performance measurements of our implementation of the offline phase triple generation [68] and online

phase evaluations of the median and set-union cardinality circuits (Section 6).

7.2.2 Authenticated Bit Generation. Authenticated bit generation,

the other component of offline preprocessing required for input

sharing, is orders-of-magnitude less expensive than triple genera-

tion. For brevity, we report results only in the default experimental

configurations. 224,000 bits must be generated by the CC to per-

form the input sharing for a median computation with 7,000 32-bit

inputs. 1,802,240 bits must be generated for a set-union cardinality

computation with 1,024 counters, 32 entries per counter, and 55-bit

entries. The RelMode CC generates 224k bits in 1.9 min using 73

MiB of communication; 1.8M bits takes 14 min and 579 MiB of

communication. The AuthMode CC generates 224k bits in 2.8 s

using 8.6 MiB of communication; 1.8M bits takes 3.8 s and 69 MiB

of communication.

7.3 Online Computations

7.3.1 Input Sharing. Similar to bit generation, input sharing is

the least expensive part of the online phase, so we present results

only in the default configuration and only for the median circuit

(recall from Section 6 that the online input-sharing protocol is not

necessary for set-cardinality). With 7,000 input parties, RelMode

takes 140 s and each relay in the CC transmits 89 MiB; AuthMode

takes 24 s/16 MiB. We estimate that secret-sharing inputs for set-

cardinality (in the default configuration) takes 92 s/60 MiB per CC

member in RelMode and 92 s/320 MiB in AuthMode.

7.3.2 Median Circuit. For the median and set-union cardinality

simulations, we assume the CC has already has the triples, bits, and

input shares necessary for circuit evaluation. The combination of

circuit AND depth and network latency almost completely deter-

mines online computation runtime; this is because the hosts must

partially-open some authenticated bits after each AND gate level

by sending and receiving bits to/from a designated party which

incurs two one-way latency costs. This cost adds up quickly in our

networks with relatively high latency. In contrast, communication

costs are low as only a few bits are required per AND gate in the

online-phase. Therefore, we do not show plots varying bandwidth

and committee size as varying these parameters has minimal effect

on runtime. We will observe that the online-phase runtime can be

accurately predicted as d · RTT, where d is the AND depth and the

round-trip time (RTT) is twice the one-way latency.

When the number of inputs is not being varied, we set themedian

circuit to accept 7,000, 32-bit integer inputs. TheCC in the RelMode

computes this median in 25 min (the circuit has ∼3,000 AND depth)

using 10 MiB of communication. The AuthMode CC can compute

this median in 5 min (7.1 MiB) due to their lower latencies.

Figures 5.6ś5.7 plot the experimental runtime as latency and

the number of 32-bit inputs is varied. As expected, runtime and

latency share a linear relationship. Recall from Section 6 that our

median circuit construction on n inputs of b bits each has AND

depth of about b log22(n)/2. Accordingly, we find that the shape

of the runtime-input graph is sublineary, which enables efficient

scaling of the online median computation as the Tor network grows.

7.3.3 Set-Union Cardinality. In these experiments, by default, we

use a set-union cardinality circuit with 1,024 counters, 32 entries

per counter, and 55-bit counter entries. In this default configuration,

theCC (in bothmodels) can compute a cardinality estimate in under

30 seconds. This circuit requires less than 5 MiB of communication

per CC member. The low runtime can be attributed to the shallow

AND depth (= 21) of the circuit. As the Figure 5.9 runtime-counter

plot shows, increasing the number of counters used in the set-union
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cardinality circuit (and thus increasing the accuracy of the count)

does not have a significant impact on the online protocol’s runtime.

However, keeping this number low keeps the number of triples

required low. For example, increasing the number of counters from

1,024 to 8,096 only decreases the cardinality computation’s standard

error from 4% to 1% but yields a tenfold increase in the number of

AND gates (and thus triples) required to compute the circuit.

7.4 System Performance

Here we use the preceding experimental results to estimate the per-

formance of Stormywhen computing themedian and set cardinality,

including both total time and communication. This estimation is

straightforward for the Authority Model, as the authorities exe-

cute all parts of the system, and so we simply add up the time and

communication of each piece (i.e. triple and bit generation for the

offline phase, input sharing and computation for the online phase).

Performance estimation in the Relay Model is more complex,

as it uses a large number of relays comprising sets of committees

for the pieces of the protocol. The main challenge is analyzing

the offline phase, which involves many differing relay bandwidths,

relay churn, and performance over multiple computations. To per-

form this analysis, we build a custom simulator that models the

execution of the offline phase over a single measurement epoch.

Each simulation uses a sequence of published Tor consensuses [5]

to determine the available relay population in each hour of the

24-hour epoch. The simulation process is then: (1) a set of Com-

putation Committees (CCs) is sampled from the initial consensus

and one chosen to be initially active, (2) a set of Triple Commit-

tees (TCs) is similarly sampled and a subset initially activated that

has maximal throughput without violating memory or bandwidth

constraints, (3) each active TC alternates between generating and

transferring triples with the generation time determined by the

TC’s bandwidth and a linear regression on the experimental results

over varying bandwidths, (4) TCs are queued to transfer triples to

the CCwith each transfer proceeding as fast as the two committees’

bandwidths allow, (5) any time the CC is not receiving triples it

generates batches of random bits at a speed based on its bandwidth

and a linear regression of the experimental results, and (6) any com-

mittee with a member missing from an hourly Tor consensus dies

at that hour, and some remaining sampled but inactive committees

are activated in its place.

We simulate committee election on the Tor network for the day

of 2018-10-01 using data from Tor Metrics [5]. As described in

Section 2, the Tor network on that day consisted of 6,331 relays

providing 275 Gbps in aggregate. Of these relays, we restrict our-

selves to using the 5,506 that have the Fast and Running flags, as

well as an archived descriptor, all of which Tor clients also require.

Of these, 2,381 were guards. We use the consensus weights to select

relays and report bandwidth using the bandwidths advertised by

the relays in their descriptors. Each relay is assumed to have a

250 ms one-way latency to each other relay.

We perform the simulation 100 times where the relays are gen-

erating offline material for the median circuit and 100 times where

the relays are generating offline material for the set-union cardi-

nality circuit. For the median simulations, we samplemTC = 1, 000

TCs andmCC = 8 CCs. For the cardinality simulations, we sample

mTC = 375 TCs andmCC = 633 CCs. Both yield 1,008 total sampled

committees, but computing the median requires more triples and

thus benefits from more TCs, while the computing the cardinality

requires more bits and thus benefits from a higher-bandwidth CC.

The randomness we vary between simulations is the random bit

string used for committee election.

7.4.1 Committee and Churn Analysis. Here we provide results de-

tailing: (1) the number of committees activated, (2) the bandwidth

of each committee (i.e. the bandwidth allocated by all members

to that committee), and (3) churn statistics across the committees.

We limit this set of results to the median-circuit simulations be-

cause these simulations require the most multiplication triples and

thus require the highest level of parallel preprocessing. Any value

that can change over the course of a simulation is reported on a

time-averaged basis, that is, averaged over all hours during the

simulation. For statistics that we measure, we record the median

value and interquartile range (IQR) across simulations.

During the simulations, we never observed that all the sampled

Computation Committees failed. Indeed, 75% of the time, the first

activated CC lasted the entire 24 hours. The maximum number of

CCs that died at any point was 3, wherewe sampledmCC = 8CCs in

total. The median bandwidth of the CC was 11.0 Mbps with an IQR

of [10.0, 13.1]. This bandwidth limits the speed of bit generation and

triple transfer, which is why the maximum-bandwidth committee

among those sampled and alive is used as the active one.

We sampled mTC = 1, 000 TCs, but only 327 were active in

the median case (IQR: [319, 333]). 712 of the 1,000 TCs (IQR: [703,

722]) died during the median 24-hour simulation. This resulted in a

median bandwidth fraction usage of 21.2% (IQR: [20.8, 21.6]) over

time over all active committees, even though 25% of the bandwidth

was always used at the beginning of the simulation. Of the 5,506

active relays at the start of the simulation, a median of 2,473 (IQR:

[2,446, 2,491]) were in at least one active committee. The median

average TC bandwidth was 7.1 Mbps (IQR: [6.8, 7.4]). This is lower

than the 11.0 Mbps CC bandwidth primarily due to the fact that all

TCs were used and not just the highest-bandwidth one.

7.4.2 Overall System Performance. Overall performance estimates

of the systemwhen computing a single median or a single set-union

cardinality are reported in Table 4. We compute these estimates

using the preceding Shadow experiments and RelMode simulations.

In all of our simulations, we record the communication required

for each party and the time taken to complete each phase of the

protocol. The Time column reports the measured time required to

complete a phase, and the Data TX column reports the measured

amount of data the each member of a TC or CC transmits during

the phase. Note that, during triple generation in RelMode, because

relays are sampled to serve on a number of TCs proportional to their

bandwidth, relays who can provide more bandwidth will transmit

more data. Therefore the Data TX value reported in the RelMode

TC is computed for a relay with a 1 Gbps link (a relay with a 500

Mbps link, for example, would transmit one-half as much data). All

other values in the table are not dependent upon the bandwidth

allocations of the hosts running the protocol.

For median computations, the online communication is relatively

low, and the time needed for the online phase is due to high round

complexity and high assumed latency. Therefore, using pipelining

(i.e. running the online phase concurrently with a subsequent offline
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Table 4: Summary of Section 7 performance evaluation.

Communication costs are reported per-party and reported

broken down by committee type (TC or CC).

Median Set Cardinality

Phase Time Data TX Time Data TX

TC CC TC CC

AuthMode

Offline 9.5 min ✗ 26 GiB 1.1 min ✗ 3.0 GiB

Online 5.3 min ✗ 21 MiB 1.6 min ✗ 302 MiB

RelMode

Offline 40 min 28 GiB 430 MiB 8.7 min 2.9 GiB 700 MiB

Online 28 min ✗ 99 MiB 2.0 min ✗ 61 MiB

phase), we estimate that 151 medians can be computed every 24

hours in AuthMode and 36 in RelMode. For set-union cardinality,

input sharing becomes expensive due to the larger relay inputs, but

even without pipelining, we estimate 533 daily computations can

be performed in AuthMode and 134 in RelMode.

8 RELATEDWORK

8.1 Tor Measurement

Previous work on privacy-preserving Tor measurement has fo-

cused on applying partially-homomorphic cryptosystems to the

problem, limiting their functionality and security. The PrivEx [30]

and PrivCount [42] systems can only provide simple sums of the

relay inputs. Moreover, a single malicious relay can add in an arbi-

trary error term to the result, for example adding a random value

to its input and making the sum useless. HisTorε [53] is designed

to solve this problem by allowing each relay a limited number of

input bits. However, it requires an analyst that cannot collude with

any of the aggregating parties. Melis et al. [56] point out the use-

fulness of the median to robustly aggregate Tor inputs and suggest

computing it using a count sketch. Their protocol reveals signifi-

cantly more information about the inputs, however, as it performs

a binary search on the space of possible input values that reveals

the number of inputs in the search interval at every step. It is also

vulnerable to an input party that doesn’t prepare its sketches prop-

erly, where handling such a case is the main goal of computing

the median. The PeerFlow bandwidth-measurement system [45]

requires a robust estimate of the relays’ bandwidth, and it presents

a method to securely compute a median by securely computing

tallies for bins covering the space of input values. This is both

approximate and reveals more about the inputs than just their me-

dian. PSC [31] securely computes an aggregate unique count, but

it uses a hash-table representation that grows linearly with the

maximum count and is thus exponentially more expensive than

our proposed method. The preceding systems generally allow the

relays to store and update measurements obliviously and provide

differentially-private outputs [28]. Their techniques for oblivious

storage are compatible with and orthogonal to our system for ag-

gregation. Our MPC protocols can compute differentially-private

outputs, but we leave the design of such functions to future work.

The Prio system [21] describes how inputs can be securely tested

for validity as expressed by an abritrary Boolean circuit. Similar

to our system, the Prio protocol uses offline/online MPC protocols,

although the offline material can be supplied by the input party for

efficiency. This technique can complement our system by providing

efficient input validation, but it does not replace the need for robust

statistics, as a valid input may still be a relative outlier.

8.2 MPC (Multi-party Computation)

Secure computation was originally introduced by several semi-

nal works in the 1980s [11, 33, 70]. More recently, a long line of

work starting with the work of Damgård et al. [23] has focused on

building efficient secure computation in the preprocessing model

(e.g., [15, 22, 32, 49]). These protocols introduced the notion of com-

puting on authenticated values, and we follow this approach in

our work. To the best of our knowledge, the largest experiment

for real-world deployment of MPC was given by Wang et al. [68]

showing global-scale MPC between 128 parties.

Another related line of work uses committee election to reduce

communication required in large-scale MPC protocols. Original

protocols in this area (e.g., [14, 19, 24, 25, 63, 72]) have focused on

selecting committees that are poly-logarithmic in n, ensuring that

each committee retains an honest majority. For n = 7, 000, these

committee sizes are prohibitively large for the O(n2) communica-

tion of malicious majority MPC protocols, such as the one we use

in our work. It is an interesting question whether we could use

honest majority committees in a practical solution.

A more similar approach to our own is taken by Choudhury

et al. [20] who focus on reducing the communication of MPC for

evaluating large circuits. They also use small committees with at

least one honest party. Their main focus is to ensure robustness

in case of abort, for which they only use one committee at a time.

While they point out that computations can be performed in parallel,

they do not focus on maximizing throughput, as we do here.

Hazay et al. [35, 36] propose the TinyKeys protocol for bandwidth-

efficient triple generation. TinyKeys uses two committees: one (P1)

with at least one honest party, and the other (Ph ) with many hon-

est parties, where increasing the number of honest parties h in

Ph reduces the key length ℓ and thus the communication. In the

setting of randomly-sampled committees from a network that is at

most 25% malicious, over the set of values for h and ℓ considered

for actively-secure TinyKeys (Table 2 [35]), TinyKeys achieves at

most a 6.5x decrease in communication complexity compared to

the protocol of Wang et al. [68]. In contrast, Stormy increases the

triple-generation rate by improving bandwidth utilization via mul-

tiple parallel triple committees. In our simulations, Stormy uses up

to 1,000 committees simultaneously to utilize as much as 25% of

Tor’s bandwidth, where even the highest-bandwidth committee in

those simulations could only use 0.19% of the total bandwidth by

itself. Therefore, we estimate that we increase by 25/0.19 ≈ 132x

the bandwidth available for triple production compared to using a

single committee. Communication costs dominate triple production,

and so we estimate that we increase the triple-generation rate over

TinyKeys by about 132/6.5 ≈ 20.3x (see the technical report [65]

for details).

These approaches seem orthogonal to some extent. It may be

possible to run parallel executions of TinyKeys, thus combining the

reduced communication of TinyKeys with the increased bandwidth
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utilization of Stormy. Challenges to making this work include (1)

TinyKeys uses short MAC shares, but the MAC switching protocol

(Figure 2) that we use for parallel composition requires MAC shares

long enough to ensure unpredictable hashes; and (2) TinyKeys

uses larger committees to ensure more honest parties, but a large

committee is more vulnerable to churn, reducing the number of

triple batches it can compute before dying.

9 CONCLUSION AND FUTUREWORK

Although Tor is an important tool for online privacy, experience

has shown that completely hiding all information about the net-

work harms its mission by making the network hard to defend,

understand, and improve. We show that MPC can provide a high

level of control for such decisions. Our implemented system could

be used today to solve existing problems in Tor, and it opens up

possibilities that could not previously be contemplated. Our work

suggests several valuable directions for future work, including im-

proving resilience by adapting MPC protocols with identifiable

abort [38] to identify and then remove misbehaving parties, design-

ing differentially-private statistics with low circuit complexity, and

applying secure computation to proactively detect and mitigate

attacks, failures, and errors in Tor.
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A IDEAL FUNCTIONALITIES

This appendix contains the ideal functionalities used or realized by

the protocols in the main body of the paper.

A.1 FPre
Functionality FPre, realized by ΠPre (Figure 1) appears in Figure 6.

A.2 FInput
Functionality FInput, realized by ΠInput (Figure 4) appears in Fig-

ure 7.

A.3 FAccMsg

The accountable message functionality FAccMsg used by ΠInput

is given in Figure 8. This functionality is used to send messages

between two parties in an accountable way. Specifically, it allows

a sender (Pin) to send a (private) messagem to a receiver R in the

presence of a committee C in such a way that R cannot later deny

that he received the message. This functionality consists of two

procedures, send and reveal. The send procedure allows Pin to send

a message to R in such a way that all parties in C agree whether

a valid message was sent, without knowing the content of that

message. The reveal procedure allows R to reveal the messagem he

received in send to the rest of C . Note that if send succeeds, then

Pin will not be disqualified in the reveal procedure.

A.4 FOnline
We define an ideal functionality for the online phase of our protocol

in Figure 9. The Computation Committee members provide the au-

thenticated inputs from FInput and the MAC key and authenticated

triples from FPre. The functionality reconstructs ∆ and verifies that

the inputs and triples are correctly authenticated under ∆. If not, it

sends abort to all parties. Otherwise, it computes the circuitC given

the inputs and returns the result to the adversary. The adversary

then decides whether the functionality should return the output to

the honest committee members.

Session 3C: Secure Computing II CCS ’19, November 11–15, 2019, London, United Kingdom

630



Functionality FPre
Notation:

• Let CC be the Computation Committee.

• Let TC1, . . . , TCmTC
be the Triple Committees.

• Let c be the size of each committee.

• Let A denote the set of parties controlled by the adversary

• Initialize ∆ =⊥.
Initialize: On input init from CC,

• Forward each input to A as it is received.

• If ∆ =⊥, set ∆← F
2λ
, and randomly choose shares ∆(i ) ←

F
2λ

such that
∑c
i=1 ∆

(i )
= ∆. Parties in A ∩ CC can choose

their shares.

• If A ∩ CC , ∅, allow A to input abort, which causes the

functionality to abort and reject further calls.

• If A does not abort, output ∆(i ) to Pi .

Random: On input (random, F, b) where F ∈ {F
2λ
, F2 } from

each Pi ∈ CC,
• Forward each input to A as it is received.

• For h = 1, . . . , b , sample a random field element rh ← F.
• For h = 1, . . . , b , produce random authenticated sharing

[[rh ]]CC (i.e., compute µh = rh · ∆ and produce random

sharings over CC of rh and µh ). Parties in A ∩ CC can

choose their shares.

• If A ∩ CC , ∅, allow A to input abort, which causes the

functionality to abort and reject further calls.

• If A does not abort, for h = 1, . . . , b , output [[rh ]](i ) to
Pi ∈ CC\A.

Triples: On input (triples, ℓ) from each Pi ∈ TCj ,
• Forward each input to A as it is received.

• For h = 1, . . . , ℓ, choose xh , yh ← F2, and set zh = xh ·yh .
• For h = 1, . . . , ℓ, produce random authenticated sharings

[[xh ]]CC, [[yh ]]CC, and [[zh ]]CC (i.e., for w ∈ {xh , yh , zh }
compute µ = w · ∆ and produce random sharings over CC

of w and µ ). Parties in A ∩ CC can choose their shares.

• If A ∩
(

TCj ∪ CC
)

, ∅, allow A to input abort, in which

case further calls from TCj are rejected, and abort is output

to all Pi ∈ TCj ∪CC. The functionality continues to respond
to calls from other committees.

• If A does not output abort, for h = 1, . . . , ℓ, output
(

[[xh ]](i ), [[yh ]](i ), [[zh ]](i )
)

to Pi ∈ CC\A.

Figure 6: Preprocessing functionality.

A.5 FRM−MPC

We give the functionality for RelMode MPC in Figure 10. This

is designed the setting in which a large number of parties wish

to participate in a secure computation by providing inputs and

(potentially) participating in the computation. To enable efficient

computation, there is a single designated Computation Committee

(CC) of size c . This committee performs the online phase of the

computation and is allowed to abort the functionality. No other

party can cause an abort, making this MPC functionality resilient

to failure and malicious behavior by most parties.

Functionality FInput
Notation:

• Let Pin be the sender with input x .

• When a party Pi outputs (abort, Pin) this means he aborts

and blames Pin. If he outputs (abort,C) this means he aborts

and blames the committee.

• Sin ⊆ C is the set of parties blaming Pin, SC ⊆ C is the set

of parties blaming the committee, and Saccept ⊆ C is the set

of parties that blame nobody.

Authenticate Input: On input {x i
h
} from Pin,

where h ∈ {1, . . . , b }, i ∈ {1, . . . , c },
• Saccept = C .

• The functionality computes xh =
∑c
i=1 x

(i )
h
, and random

shares of the authenticated value,
{

(∆xh )(i )
}

. It gives A the

authenticated shares
(

x
(i )
h

, (∆xh )(i )
)

for Pi ∈ A.

• Letm
(i )
h
= (∆xh )(i ).

• If Pin < A and A , ∅, A partitions C into (Saccept, SC ).
• if A = {Pin }, A either sets Sin = C , or Saccept = C .

• If {Pin } ⊂ A, A partitions C into (Saccept, Sin, SC ). Ad-
ditionally, for each Pi ∈ Saccept, A sets the values of

(x (i )
h

,m
(i )
h
), arbitrarily.

• The functionality sends (abort,C) to Pi ∈ SC , (abort, Pin)
to Pi ∈ Sin, and

(

x
(i )
h

,m
(i )
h

)

to Pi ∈ Saccept.

Figure 7: Input sharing functionality.
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Functionality FAccMsg

Notation:

• Let Pin be the sender with inputm.

• Let R be the receiver.

• Let C be the committee (Note that R ∈ C ).

• When a party Pi outputs (abort, Pin) this means he aborts

and blames Pin. If he outputs (abort,C) this means he aborts

and blames the committee.

Send: On input (send,m) from Pin,

• The functionality storesm.

• If Pin < A, output (accept,m) to R , and output accept to all
parties in C \ {R }.

• If Pin ∈ A, do the following:

ś If R < A, allow A to specify an input in {accept, abort}.
If A inputs accept, then R outputs (accept,m) and all

parties in C \ {R } output accept. If A inputs abort, then

all parties in C (including R) output (abort, Pin) (i.e., they
abort and blame Pin).

ś If R ∈ A, allow A to specify a partition of C ,

(Saccept, Sin, SC ). All Pi ∈ Saccept output accept (if R ∈
Saccept, he additionally outputsm). All Pi ∈ Sin output

(abort, Pin). All Pi ∈ SC output (abort,C) (i.e., they abort
and blame the committee).

Reveal: On input (reveal) from R ,

• If R < A, the functionality outputs (accept,m) to all parties
in C .

• If R ∈ A and Pin < A, A specifies a partition of C ,

(Saccept, SC ). Every Pi ∈ Saccept outputs (accept,m). Every
Pi ∈ SC outputs (abort,C).

• If both R ∈ A and Pin ∈ A, A specifies a partition as

above, and, additionally, for each party Pi ∈ Saccept, A
specifies a message m′i . Then, every player Pi ∈ Saccept
outputs (accept,m′i ) and Pi ∈ SC output (abort,C).

Figure 8: Accountable messaging functionality.

Functionality FOnline
Notation:

• The functionality is parametrized by a Boolean circuit C.

• Let CC = {P1, . . . , Pc } be the Computation Committee.

• Let x1, . . . , xn be all of the input bits successfully provided

by all parties during the input sharing phase.

• Let ℓ denote the total number of AND gates in the circuit C,

and
(

[[w j ]](i ), [[yj ]](i ), [[zj ]](i )
)

denote the i th party’s shares

of the jth triple.

Compute:

Party Pi ∈ CC provides the following input: ∆
(i ),

{(

[[wh ]](i ), [[yh ]](i ), [[zh ]](i )
)}ℓ

h=1
,
{(

[[xh ]](i ), [[∆xh ]](i )
)}n

h=1

• If not every member of CC provides the same number of

input shares and triple shares, output abort to every party.

• Reconstruct ∆ from the shares provided.

• Reconstruct and verify the input values, x1, . . . , xn from

the shares provided. If verification fails for any input value,

output abort to every party.

• Reconstruct and verify the triples from the shares provided.

If any triple is invalid (z , w · y), or if verification fails for

any triple value, output abort to every party.

• Compute C(x1, . . . , xn ) and output the result to A.

• If A says continue, send C(x1, . . . , xn ) to the remainder of

CC. Otherwise, send abort to the remainder of the CC.

Figure 9: Functionality for computing the online phase.

Functionality FRM−MPC

Notation:

• The functionality is parametrized by a Boolean circuit C

outputting o bits.

• Let P = {P1, . . . , Pn } be the set of all parties, and let CC =
{Pi1 , . . . , Pic } be the Computation Committee.

Compute: On input (x1, . . . , xn ) from P (each party supplies

one input):

• If A∩CC , ∅, then A inputs either abort or run to the func-

tionality. If A inputs abort, then the functionality outputs

⊥ to all parties.

• For any Pi ∈ A, A may input (abort, i) to the functionality
(i.e., if an input party aborts), in which case the functionality

sets xi =⊥ and outputs (abort, i) to Computation Commit-

tee.

• The functionality computes (y1, . . . , yo ) = C(x1, . . . , xn )
• If A ∩ CC , ∅, then the functionality returns y to A. A

specifies a set Sabort ⊆ P.
• The functionality outputs ⊥ to all Pi ∈ Sabort and outputs

(y1, . . . , yo ) to all Pi ∈ CC \ Sabort.

Figure 10: Large-Scale MPC functionality.
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